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a) The semiconservative model
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c) The dispersive model
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1. Watson and Crick DNA model implies a mechanism for replication:
a. Unwind the DNA molecule.
b. Separate the two strands.

c. Make a complementary copy for each strand.
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Fig. 3.2 The Meselson-Stahl experiment, which showed that DNA replicates

semiconservatively
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Fig. 3.4b DNA chain elongation catalyzed by DNA polymerase

DNA polymerization
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DNA ligase
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DNA polymerase
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DNA polymerase Structure
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Fig. 3.5 Model for the formation of a replication bubble at a replication origin in

E. coli and the initiation of the new DNA strand
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Replication initiation
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Fig. 3.6a, b Model for the events occurring around a single replication fork of the

E. coli chromosome
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Fig. 3.6c-e Model for the events occurring around a single replication fork of the

E. coli chromosome
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Fig. 3.7 Action of DNA ligase in sealing the gap between adjacent DNA fragments to

form a longer, covalently continuous chain

|
[ |
DNA I Iga Se Single-straded brnak\'ﬁ— ||:'=D
5" @TOTuf s pEh Gl Y
lﬂ*@*@l@l@l@ 5
3 ATTCCGA TCGAT % 3 ATTCCGATCGAT %
—> Ereyme + AMF
5 TAAGGCTo AGCTA 3 5 TAAGGCTAGCTA % or - * Enzyme-AMP
Sy Emeyme + NAD
DNA ligase v
Q .
Single-strand gap Gap sealed O II:‘=D-_:" Phosphociesier
'D linksge

5 @7@1-@7@1-@1-@1- 3
3 @J"@J-@J-@-I-@J-@L@&

Fig. 6.14 CMNA ligase catalyzes the covalent closure of Micks in
DMA. The enetgy required o farm the ester linkage s
pravided by eilher adanasine tnphosphate {ATE) or
ricotinamide-adenineg Hiealeatide {NAEY,
gepending an the series

Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.



Fig. 3.8 Model for the “replication machine,” or replisome, the complex of key

replication proteins, with the DNA at the replication fork
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Replication of circular DNA and the supercoiling problem
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Role of Topoisomerase
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Fig. 3.9 Bidirectional replication of circular DNA molecules
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Fig. 3.10 The replication process of double-stranded circular DNA molecules through
the rolling circle mechanism
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Fig. 3.12 Replicating DNA of Drosophila melanogaster
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Fig. 3.14 The problem of replicating completely a linear chromosome in eukaryotes
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Remember this! — Part 1

Table 16.1 Bacterial DNA replication proteins and their functions

Protein Function for Leading and Lagging Strands

Helicase Unwinds parental double helix at replication forks

Single-strand binding Binds to and stabilizes single-stranded DNA until it can be used as a template

protein

Topoisomerase Corrects “overwinding™ ahead of replication forks by breaking, swiveling, and rejoining DNA strands
Function for Leading Strand Function for Lagging Strand

Primase Synthesizes a single RNA primer at the 5° end of the Synthesizes an RNA primer at the 5° end of cach
leading strand Okazaki fragment

DNA pol 111 Continuously synthesizes the leading strand, Elongates each Okazaki fragment, adding on to
adding on to the primer IS pnmer

DNA pol | Removes primer from the 5" end of leading strand Removes the primer from the 5’ end of each
and replaces it with DNA, adding on to the adjacent fragment and replaces it with DNA, adding on to
3" end the 3’ end ol the adjacent fragment

DNA Ligase Joins the 3’ end of the DNA that replaces the primer Joins the Okazaki fragments

to the rest of the leading strand




Remember this!- part 2

DNA Replication in Prokaryotes and Eukaryotes

Prokaryotes Eukaryotes
Five polymerases (I, II, III, IV, V) Five polymerases (e, B,y,S,e)
Functions of polymerase: Functions of polymerase:

[ is involved in synthesis, proofreading, o: a polymerizing enzyme

repair, and removal of RNA primers

I1 is also a repair enzyme B: a repair enzyme
[II is main polymerizing enzyme y: mitochondrial DNA synthesis
IV, V are repair enzymes under &: main polymerizing enzyme
unusual conditions ¢ : function unknown
Polymerase are also exonucleases Not all polymerases are exonucleases
One origin of replication Several origins of replication
Okazaki fragments 1000-2000 Okazaki fragments 150-200
residues long residues long

No proteins complexed to DNA Histones complexed to DNA
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