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1 Complex Numbers

1.1 Motivation: The Need for Complex Numbers

All of us know that the two roots of the quadratic equation ax2+ bx+ c = 0
with real coefficients are given by

x =
−b±

√
b2 − 4ac

2a

which is known as the quadratic formula or the Sridharacharya formula for
solving quadratic equations. Solving quadratic equations is something that
mathematicians have been able to do since the time of the Babylonians.
When b2 − 4ac > 0, these two roots are real and distinct; graphically they
are the points where the curve y = ax2 + bx + c cuts the x-axis. When
b2 − 4ac = 0, we have only one real root and it is the point where the
curve just touches the x-axis. But when b2 − 4ac < 0, there are no real
solutions to the equations . From the graphical point of view, the curve y =
ax2 + bx+ c lies entirely above or below the x-axis. It is only comparatively
recently that mathematicians have been comfortable with these roots when
b2 − 4ac < 0. During the Renaissance, quadratic equations would have been
considered unsolvable or its roots would have been called imaginary. (The
term imaginary was first used by the French Mathematician René Descartes
(1596 – 1650). Whilst he is known more as a philosopher, Descartes made
many important contributions to mathematics and helped found co-ordinate
geometry — hence the naming of Cartesian co-ordinates.) If we imagine

√
−1

to exist, and that it behaves (adds and multiplies) much the same as other
numbers then the two roots of the quadratic can be written in the form

x = A+B
√
−1,

where

A = − b

2a
and B =

√
4ac− b2

2a
are real numbers.

But what meaning can such roots have? It was this philosophical point
which pre-occupied mathematicians until the start of the 19th century when
these imaginary numbers started proving so useful (especially in the work
of Cauchy and Gauss) that essentially the philosophical concerns just got
forgotten about.

1.2 Cartesian Representation of Complex Numbers

This section underlines the preliminary concepts related to complex numbers
in Cartesian coordinates (x, y). It is assumed that the definition and basic
properties of the set of real numbers R are known.
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1.2.1 Complex Numbers

Definition: A complex number is a number of the form x+ yi, where x and
y are real numbers and i is the imaginary unit equal to

√
−1.

If z = x+ yi, then x is known as the real part of z and y as the imaginary
part. We write x = Re z and y = Im z. This is called the cartesian repre-
sentation of complex numbers. Note that all real numbers are complex — a
real number is simply a complex number with no imaginary part. The term
‘complex number’ is due to the German mathematician Carl Friedrich Gauss
(1777–1855). Gauss is considered by many as the greatest mathematician
ever. He made major contributions to almost every area of mathematics
from number theory, to non-Euclidean geometry, to astronomy and mag-
netism. His name precedes a wealth of theorems and definitions throughout
mathematics.

In component notation, z = x + yi can be written as (x, y). The set of
complex numbers is denoted by C. In set builder form, C is expressed as

C = {z : z = x+ yi, (x, y) ∈ R & i2 = −1}.

The set of all non-zero complex numbers C \{(0, 0)} is denoted by C
∗. Note

that sometimes we’ll use the form x + yi, and sometimes x + iy. There is
no mathematical difference. In some contexts, there is a mild psychological
difference.

A note on i: This notation was first introduced by the Swiss mathematician
Leonhard Euler (1707–1783). Much of our modern notation is due to him
including e and π. Euler was a giant in 18th century mathematics and the
most prolific mathematician ever. His most important contributions were in
analysis (eg. on infinite series, calculus of variations). The study of topol-
ogy arguably dates back to his solution of the Königsberg Bridge Problem.
(Many books, particularly those written for engineers and physicists use j
instead.)

A note on ordering in C: One property of R that does not carry over to
C is the order relation, which is the ability to say that one number is bigger
than another. If we could compare the sizes of complex numbers, then either
i > 0 or i < 0. However, the properties of any ordering would imply that
i2 > 0, and so −1 > 0. This contradicts our order relation in R, and shows
that there is no order relation in C. It is therefore immaterial to talk about
inequalities of complex numbers. However, we can talk about inequalities
involving the real or imaginary parts of complex numbers and, as discussed
in Sec. 2.4, the moduli (plural for ’modulus’) of complex numbers. This is
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because, for any complex number, its real part, its imaginary part, and its
modulus are all real numbers.

One of the first major results concerning complex numbers and which con-
clusively demonstrated their usefulness was proved by Gauss in 1799. From
the quadratic formula, we know that all quadratic equations can be solved
using complex numbers. What Gauss was the first to prove was the much
more general result:

Theorem A.1: (Fundamental Theorem of Algebra) The roots of any poly-
nomial equation a0 + a1x + a2x

2 + · · · + anx
n = 0 with real (or complex)

coefficients ai are complex. That is there are n (not necessarily distinct)
complex numbers γ1 . . . γn such that

a0 + a1x+ a2x
2 + · · ·+ anx

n = an(x− γ1)(x− γ2) · · · (x− γn).

In particular the theorem shows that an n degree polynomial has, counting
multiplicities, n roots in C.

The theorem only guarantees the existence of the roots of a polynomial
somewhere in C unlike the quadratic formula which plainly gives us the
roots. The theorem gives no hints as to where in C these roots are to be
found.

1.2.2 Algebraic Operations on Complex Numbers

We add, subtract, multiply and divide complex numbers much as we would
expect. We add and subtract complex numbers by adding their real and
imaginary parts.

Consider two complex numbers z1 = a+ bi and z2 = c+ di. Then

z1 + z2 = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

z1 − z2 = (a+ bi)− (c+ di) = (a− c) + (b− d)i.

We can multiply complex numbers by expanding the brackets in the usual
fashion and using i2 = −1,

z1 · z2 = (a+ bi)(c + di) = (ac− bd) + (ad+ bc)i,

and to divide complex numbers we note firstly that (c+di)(c−di) = c2+d2

is real. So

z1

z2
=
a+ bi

c+ di
=
a+ bi

c+ di
× c− di

c− di
=
ac+ bd

c2 + d2
+
bc− ad

c2 + d2
i.
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Proposition A.1: The addition of complex numbers satisfies the following
properties:

1. Commutative law:

z1 + z2 = z2 + z1 for all z1, z2 ∈ C.

2. Associative law:

(z1 + z2) + z3 = z1 + (z2 + z3) for all z1, z2, z3 ∈ C.

3. Existence of additive identity: There exists a unique complex num-
ber 0 = 0 + 0i such that

z + 0 = 0 + z = z for all z ∈ C.

4. Existence of additive inverse: For any complex number z, there
exists a unique complex number (−z) such that

z + (−z) = (−z) + z = 0.

Proposition A.2: The multiplication of complex numbers satisfies the fol-
lowing properties:

1. Commutative law:

z1 · z2 = z2 · z1 for all z1, z2 ∈ C.

2. Associative law:

(z1 · z2) · z3 = z1 · (z2 · z3) for all z1, z2, z3 ∈ C.

3. Existence of multiplicative identity: There exists a unique com-
plex number 1 = 1 + 0i such that

z · 1 = 1 · z = z for all z ∈ C.

4. Existence of multiplicative inverse: For any non-zero complex
number z, there exists a unique non-zero complex number ϑ such that

z · ϑ = ϑ · z = 1.

In this case, ϑ is called the inverse of z and is written ϑ = z−1 = 1
z . It

is easy to verify that the inverse of z = a + bi, a and b not both zero
simultaneously, is given by ϑ = 1

a+bi =
a

a2+b2
− b

a2+b2
i.

7



5. Distributive law of multiplication over addition:

z1 · (z2 + z3) = z1 · z2 + z1 · z3 for all z1, z2, z3 ∈ C.

An integer power of a complex number z ∈ C
∗ is defined by

z0 = 1, z1 = z, z2 = z · z;

zn = z · z · · · z
︸ ︷︷ ︸

n times

for all integers n > 0.

and zn = (z−1)−n for all integers n < 0.

Proposition A.3: The following properties hold for all complex numbers
z, w,∈ C

∗ and for all integers m, n:

1. zm · zn = zm+n

2. zm

zn = zm−n

3. (zm)n = zmn

4. (z · w)n = zn · wn

5.
(
z
w

)n
= zn

wn .

When z = 0, we have 0n = 0 for all integers n > 0. Also, note that
in ∈ {1,−1, i,−i} for any integer n.

1.2.3 Conjugate of a Complex Number

Definition: Let z = a + bi. Then the number a − bi is called the complex
conjugate or simply conjugate of z and is denoted by z̄ (or in some books by
z∗).

It is well known from our high school textbooks that when the quadratic
equation Ax2 +Bx+ C = 0 with real coefficients have complex roots, then
these roots are conjugates of each other. Generally, if z0 is a root of the
polynomial anz

n + an−1z
n−1 + · · ·+ ao = 0, where the ai’s are real, then so

is its conjugate z̄0.

Proposition A.4: The conjugate operation satisfies the following prop-
erties. Let z, w ∈ C. Then

1. z = z̄ if and only if z ∈ R.
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2. z = ¯̄z.

3. The number z · z̄ is a non-negative real number, i.e., z · z̄ ∈ R
+.

4. z ± w = z̄ ± w.

5. z · w = z · w.

6.
(
z
w

)
= z

w , w 6= 0

7. z−1 = (z)−1.

8. For any complex number z,

Re(z) =
z + z

2
and Im(z) =

z − z

2i
.

Note that Properties (4) and (5) above can be generalized as

4′.

(
n∑

k=1

zk

)

=

n∑

k=1

zk and 5′.

(
n∏

k=1

zk

)

=

n∏

k=1

zk

respectively, for all zk ∈ C, k = 1, 2 . . . , n. Moreover, as a consequence of
(5′.) and (6), we have

zn = (z)n for any integer n and for any z ∈ C.

1.2.4 Modulus of a Complex Number

Definition: Let z = a+bi. Then the number
√
a2 + b2 is called the modulus

or the absolute value of z and is denoted by |z|.

Proposition A.5: The modulus operation satisfies the following proper-
ties. Let z, w ∈ C. Then

1. −|z| ≤ Re(z) ≤ |z| and −|z| ≤ Im(z) ≤ |z|.

2. |z| ≤ 0 for all z ∈ C and |z| = 0 if and only if z = 0.

3. |z| = | − z| = |z|.

4. z · z = |z|2.

5. |z · w| = |z| · |w|.

6. |z| − |w| ≤ |z + w| ≤ |z| + |w|. The last inequality, known as the
triangle inequality, becomes an equality if and only if Re(zw) = |z||w|.
The latter is equivalent to z = λw, where λ ∈ R

+.
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7. ||z| − |w|| ≤ |z − w|.

8. |z−1| = |z|−1.

9. | zw | =
|z|
|w| .

Again, note that Property (5) and the last inequality in Property (6) above
can be generalized as

5′.

∣
∣
∣
∣
∣

n∏

k=1

zk

∣
∣
∣
∣
∣
=

n∏

k=1

|zk| and 6′.

∣
∣
∣
∣
∣

n∑

k=1

zk

∣
∣
∣
∣
∣
≤

n∑

k=1

|zk|

respectively, for all zk ∈ C, k = 1, 2 . . . , n. Moreover, as a consequence of
(5′.), we have

|zn| = |z|n for any integer n and for any z ∈ C.

1.3 Polar Representation of Complex Numbers

The real numbers are often represented on the real line which increase as we
move from left to right (Fig. 1).

Figure 1: The real number line

The complex numbers, having two components, their real and imaginary
parts, can be represented as a plane; indeed C is sometimes referred to as
the complex plane, but more commonly when we represent C in this manner
we call it an Argand diagram (Fig. 2), named after the Swiss mathematician
Jean-Robert Argand (1768–1822). The point (a, b) represents the complex
number a + bi so that the x-axis contains all the real numbers, and so is
termed the real axis, and the y-axis contains all those complex numbers
which are purely imaginary (i.e. have no real part) and so is referred to as
the imaginary axis. Note that the set of real numbers can also be represented
as

R = {z ∈ C : Im z = 0}.

Note that the conjugate z of a point z is its mirror image in the real axis.
So, z 7−→ z represents reflection in the real axis.

A complex number z in the complex plane can be represented by Carte-
sian co-ordinates (x, y), its real and imaginary parts respectively, but it is
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Figure 2: An Argand diagram

often useful to switch to its representation by polar co-ordinates (r, θ). If we
let r be the distance of z from the origin and, if z 6= 0, we let θ be the angle
that the line joining z to the origin makes with the positive real axis (Fig.
3), then using the triangle law of vector addition, we can write

z = x+ iy = r cos θ + ir sin θ.

Figure 3: Polar representation of z = x+ iy

By Euler’s identity, we have z = reiθ. This is called the polar represen-
tation of complex numbers. The relations between z′s Cartesian and polar
co-ordinates are simple:

x = r cos θ and y = r sin θ,

r =
√

x2 + y2 and tan θ =
y

x
.
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Note that r is simply the modulus of z, i.e., |z| = r, while the number θ is
called the argument of z and is written arg z. It is easy to see that (1) arg 0
is undefined and (2) arg z ± π is an argument of −z.

A note on the geometric interpretation of the product of two com-
plex numbers — zw: As a transformation of the Argand diagram, the
operation ‘multiply by w’ leaves the point 0 unmoved, scales distances from
0 by a factor |w|, and rotates the plane anticlockwise about 0 through an
angle arg w. To clarify, let z = reiθ and w = Reiφ, then

zw = rRei(θ+φ) = |z||w| [cos(θ + φ) + i sin(θ + φ)].

It is worth remembering that this anticlockwise convention for rotations is
standard not just in the context of the complex plane, but also in geometry,
in mechanics — in most of mathematics. There is more to the convention,
though: if α > 0 then an anticlockwise rotation through angle −α is a clock-
wise rotation through angle α.

The cautious reader may have already noticed that the notation θ for arg z
is ambiguous since there are many values of θ for the same z which means
that arg z is not a function as such. Let us demonstrate this by an exam-
ple. Suppose that z = 3i. So z corresponds to the point (0,−3). Then
r = |z| = 3, but there are infinitely many possibilities for the angle θ. One
possibility is −π

2 ; all the others are obtained by adding integer multiples of
2π:

arg z = . . . ,−5π

2
,−π

2
,
3π

2
,
7π

2
, . . . .

So z has many polar forms:

z = · · · = 3ei(−5π/2) = 3ei(−π/2) = 3ei(3π/2) = 3ei(7π/2) = · · · .

Thus, two polar forms r1e
iθ1 and r2e

iθ2 are equal if and only if r1 = r2 and
θ2 = θ1 + 2kπ for some k ∈ Z. Now, in order to specify a unique polar
form, we have to restrict the range for θ to some interval of width 2π. The
most common choice is to require −π < θ ≤ π because it makes ’arg’ single-
valued. This special θ is called the principal value of the argument, and is
denoted as θ = Arg z.

Thus, depending on the position of z on the Argand diagram, the value
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of Arg z can be evaluated on the basis of the following rule:

Arg z =







0 for z lying on the positive real axis

arg z for z lying in the first quadrant
π
2 for z lying on the positive imaginary axis

π − arg z for z lying in the second quadrant

π for z lying on the negative real axis

arg z − π for z lying in the third quadrant

−π
2 for z lying on the negative imaginary axis

−arg z for z lying in the fourth quadrant.

Proposition A.6: The argument operation satisfies the following prop-
erties. Let z, w ∈ C

∗. Then

1. arg (zw) = arg z + arg w + 2kπ for all k ∈ Z.

2. arg( z
w ) = arg z − arg w + 2kπ for all k ∈ Z.

3. arg z = − arg z + 2kπ for all k ∈ Z.

Warning: It is not always true that Arg z+Arg w = Arg (zw). For instance,
if z = w = −1+i, then Arg z = Arg w = π

4 which implies Arg z+Arg w = π
2

but Arg (zw) = −π
2 .

Note that Property (1) above can be generalized as

arg

(
n∏

k=1

zk

)

=

n∑

k=1

arg zk

for all zk ∈ C
∗, k = 1, 2 . . . , n. This leads us to

arg (zn) = n arg z

for any non-negative integer n. This relation forms the basis of a famous
theorem due to de Moivre:

Theorem A.2: (De Moivre’s Theorem) For a real number θ and integer
n, we have

(cos θ ± i sin θ)n = cos nθ ± i sin nθ.

When n is a fraction, positive or negative, and θ is a real number,

(cos θ ± i sin θ)n = cos nθ ± i sin nθ.
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is one of the values of (cos θ ± i sin θ)n.

Abraham de Moivre (1667–1754), a French protestant who moved to Eng-
land, is best remembered for this formula but his major contributions were in
probability and appeared in his The Doctrine of Chances (1718). de Moivre’s
Theorem has many uses. One of them is to express the cosines and sines of
multiples of an angle θ as polynomials in cos θ and sin θ.

1.4 Roots of Unity

If z ∈ C, n ∈ N and zn = 1, then z is known as a root of unity — an nth root
of unity, to be precise. For such numbers, since |z|n = |zn| = 1 and |z| > 0,
we have |z| = 1.

We now define a special set:

S1 = {z ∈ C : |z| = 1} (standard notation)

which can be identified as the unit circle in the complex plane (Argand di-
agram). The reader will learn in a future course that this set is an example
of a group and is known as the circle group.

We now apply these ideas to determine the nth roots of unity. In other
words, we determine all those complex numbers z which satisfy zn = 1,
n ∈ N. Well, it is already known from the Fundamental Theorem of Al-
gebra that there are (counting multiplicities) n solutions to the equation
zn = 1. Before going into the general case, let us first solve the equation for
n = 2, 3, 4.

• When n = 2, we have

0 = z2 − 1 = (z − 1)(z + 1)

and so z = ±1.

• When n = 3, we have

0 = z3 − 1 = (z − 1)(z2 + z + 1).

So 1 is a root and completing the square, we see

0 = z2 + z + 1 =

(

z +
1

2

)2

+
3

4

14



which has roots −1
2 ±

√
3i
2 . So the cube roots of 1 are

1,−1

2
+

√
3i

2
,−1

2
−

√
3i

2
.

• When n = 4, we can factorise as

0 = z4 − 1 = (z2 − 1)(z2 + 1) = (z − 1)(z + 1)(z − i)(z + i),

so the fourth roots of 1 are 1,−1, i,−i.

Plotting these roots on Argand diagrams, we see a pattern developing:

Figure 4: Representation of square, cube, and fourth roots of unity on Ar-
gand diagrams

Returning to the general case, suppose that

z = r(cos θ + i sin θ) and satisfies zn = 1.

Then, zn has modulus rn and argument nθ whilst 1 has modulus 1 and
argument 0. Comparing their moduli, we have

rn = 1 =⇒ r = 1.

Comparing arguments, we see nθ = 0+2kπ, k ∈ Z giving θ = 2kπ
n . Therefore

z = cos

(
2kπ

n

)

+ i sin

(
2kπ

n

)

, k ∈ Z.

At first glance, there seem to be an infinite number of roots but, as cos and
sin have period 2π, these z repeat with period n. Hence we have shown that

Theorem A.3: The nth roots of unity, that is the solutions of the equa-
tion zn = 1, are

z = cos

(
2kπ

n

)

+ i sin

(
2kπ

n

)

, k = 0, 1, 2, . . . , n − 1.
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Plotted on an Argand diagram, these nth roots of unity form a regular poly-
gon of n sides inscribed within the unit circle with a vertex at 1.

We can now easily determine all those complex numbers z such that zn = w

for any w ∈ C. Following the above procedure, we have that

z = |w| 1n cos

(
arg z + 2kπ

n

)

+ i sin

(

arg z +
2kπ

n

)

, k = 0, 1, 2, . . . , n− 1.

For instance, all the solutions to the cubic equation z3 = −2+2i is given by

z =
√
2 cos

(
3π
4 + 2kπ

3

)

+ i sin

(
3π
4 + 2kπ

3

)

, k = 0, 1, 2.

So, the three roots of the given equation, corresponding to k = 0, 1, 2 repec-
tively, are

1 + i,

(

−1

2
−

√
3

2

)

+ i

(√
3

2
− 1

2

)

,

(

−1

2
+

√
3

2

)

+ i

(

−
√
3

2
− 1

2

)

.

1.5 Complex Exponential, Logarithmic, and Trigonometric

Functions

1.5.1 Exponential Function

The complex exponential function is defined via its power series:

exp z = ez =
∞∑

n=0

zn

n!
,

where z is any complex number.

Proposition A.7: The complex exponential function satisfies the following
properties. Let z, z1, z2 be complex numbers. Then

1. ez1 · ez2 = ez1+z2 .

2. ez1
ez2 = ez1−z2 . Hence, 1

ez1 = e−z1 .

3. (ez)n = enz, where n is an integer.

4. If n be a fraction, say p
q , (e

z)n has q distinct values but enz is unique.
In this case, enz is one of the values of (ez)n.

5. e2nπi = 1, where n is any integer.
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6. ez+2nπi = ez. This states that the complex exponential function is
periodic with period π.

If z = x + iy be a complex number, then using Euler’s identity, the expo-
nential function of z is written as

ez = ex+iy = ex · eiy = ex(cos y + i sin y).

Since ex > 0 for all real x, ex(cos y + i sin y) represents a complex number
in polar form, ex being the modulus and y being an amplitude of exp z.

Since ex 6= 0 for any real number x, ez is a non-zero complex number for
any complex number z.

Let u+ iv be a non-zero complex number and let its polar representation be
r(cos θ + i sin θ). Since r is positive, log r is real and r can be expressed as

r = elog r. Therefore,

u+ iv = elog r(cos θ + i sin θ)

= elog r · eiθ

= elog r+iθ

= exp(log r + iθ).

Thus, when u+iv is a given non-zero complex number, there exists a complex
number z = log r + iθ such that exp z = u+ iv. This means that the range
of the exponential function of z is the entire complex plane excluding the
origin.

1.5.2 Logarithmic Function

Let z be a non-zero complex number. Then there always exists a complex
number w such that ew = z. This w is said to be a complex logarithm of z.

The real logarithm function ln x is defined as the inverse of the exponen-
tial function, i.e, y = ln x is the unique solution of the equation x = ey.
This works because ex is a one-to-one function: if x1 6= x2, then e

x1 6= ex2 .
Well, this is not the case for ez. By Property 6 of Proposition A.7, we have
ew = ew+2nπi, where n is an integer. This shows that if w is a complex
logarithm of z, then w+2nπi is also a complex logarithm of z which means
that ”logarithm of z” is a many-valued function of z. This is denoted by
log z = w + 2nπi.

Now, to find w, we let w = u+ iv be the Cartesian form of w and z = reiθ

17



be the polar form of z. When we substitute these values into z = ew, we
have

reiθ = eu+iv = eu · eiv.
Equality of these complex numbers gives eu = r and v = θ = arg z. The
first condition further gives u = ln r = ln |z|. Thus, w = ln |z|+ i arg z and
a logarithm of the complex number z is

log z = ln |z|+ i arg z.

Note that we use ln only for logarithms of real numbers, while log denotes
logarithms of complex numbers with base e (and no other base is used).

1.5.3 Trigonometric Function
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2 Theory of Equations

Keep in mind that in this section, an equation always means a polynomial
equation, unless stated otherwise.

2.1 Descarte’s Rule of Signs

In a sequence of real numbers a0, a1, . . . , an, none of which is zero, the signs
of two consecutive terms may be same or different. When same sign occurs,
we say that the elements show a continuation of signs; when the signs are
different we say that the elements show a variation of signs. However, if
some of the elements of a sequence be zero, we ignore their presence in the
sequence and count the number of continuations and variations of signs. For
example, in the sequence 1, 3,−2, 0,−3, 0, 4, 0, 0, 7, there are 3 continuations
and 2 variations of signs.

Theorem B.1: (Descarte’s Rule of Signs) The number of positive roots
of a polynomial equation f(x) = 0 with real coefficients does not exceed the
number of variations of signs in the sequence of the coefficients of f(x) and
if less, it is less by an even number.

The above theorem asserts that if v be the number of variations of signs
and r be the number of positive roots, then v = r + 2h where h is a non-
negative integer. This remarkable rule of determining the nature of roots
of a polynomial equation first appeared in Descarte’s revolutionary work La
Géometrie in 1637.

Corollary B.1.1: The number of negative roots of a polynomial equation
f(x) = 0 with real coefficients does not exceed the number of variations of
signs in the sequence of coefficients of f(−x) and if less, it is less by an even
number.

Corollary B.1.2: If f(x) = 0 be a polynomial equation of degree n with
real coefficients having no zero root and v, v′ are respectively the number of
variations of signs in the sequence of coefficients of f(x) and f(−x) such
that v+ v′ < n, then the equation f(x) = 0 has at least n− (v+ v′) complex
roots.

Corollary B.1.3: If all the roots of the polynomial equation f(x) = 0 be
non-zero real and v, v′ are respectively the number of variations of signs in
the sequence of coefficients of f(x) and f(−x), then the equation f(x) = 0
has v positive roots and v′ negative roots.
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2.2 Relation between Roots and Coefficients

Let f(x) = aox
n + a1x

n−1 + · · · + an be a polynomial of degree n with
coefficients real or complex. Then a0 6= 0. Let α1, α2, . . . , αn be the roots of
the equation f(x) = 0. Then

aox
n + a1x

n−1 + · · · + an = a0(x− α1)(x− α2) · · · (x− αn)

= a0[x
n − Σαxn−1 +Σα1α2x

n−2 − · · · + (−1)n(α1α2 · · ·αn)],

where

Σα1 = sum of the roots

Σα1α2 = sum of the product of the roots taken two at a time

· · · · · ·
Σα1α2 · · ·αr = sum of the products of the roots taken r at a time.

From the equality of polynomials, it follows that

a1 = a0(−Σα1)

a2 = a0(Σα1α2)

· · · · · ·
an = a0(−1)n(α1α2 · · ·αn).

Therefore,

Σα1 = −a1
a0

Σα1α2 =
a2

a0
· · · · · ·

Σα1α2 · · ·αr = (−1)r
ar

a0
.

For example, if α, β, γ, δ are the roots of the equation a0x
4 + a1x

3 + a2x
2 +

a3x+ a4 = 0, then

α+ β + γ + δ = −a1
a0

αβ + βγ + γδ + δα =
a2

a0

αβγ + βγδ + γδα + δαβ = −a3
a0

αβγδ =
a4

a0
.
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2.3 Symmetric Functions of Roots

A function f of two or more variables is said to be a symmetric function
if f remains unaltered by an interchange of any two of its variables. For
example, f(x, y, z) = x2y2 + y2z2 + z2x2 is a symmetric function of x, y, z.
f(x, y, z) = xy + yz is not symmetric in x, y, z, because f does not remain
unaltered if x and y are interchanged.

A symmetric function of the roots of an equation is an expression that in-
volves all the roots alike and the expression remains unaltered if any two
of the roots be interchanged. For example, if α, β, γ be the roots of the
equation, then α2 + β2 + γ2 is a symmetric function of the roots, while
α2β + β2γ + γ2α is not a symmetric function.

A symmetric function which is the sum of a number of terms of the same
type is represented by any one of its terms with a Σ before it. For ex-
ample, the symmetric function α2 + β2 + γ2 is represented by Σα2, while
α2βγ + β2γα+ γ2αβ is represented by α2βγ.

Theorem B.2: (Newton’s Theorem) Let α1, α2, . . . , αn be the roots of the
equation

f(x) = xn + p1x
n−1 + p2x

n−2 + · · ·+ pn = 0

and let sr = αr
1 + αr

2 + · · · + αr
n, where r is an non-negative integer. Then

1. sr + p1sr−1 + p2sr−2 + · · ·+ pr−1s1 + rpr = 0. if 1 ≤ r < n

2. sr + p1sr−1 + p2sr−2 + · · ·+ pnsr−n = 0, if r ≥ n.

Note 1: s1, s2, s3, . . . can be successively calculated in terms of the coef-
ficients of the equation.

We have

s1 + p1 = 0 and therefore s1 = p1

s2 + p1s1 + 2p2 = 0 and therefore s2 = p21 − 2p2

and so on.

Note 2: If none of α1, α2, . . . , αn be zero, then s−1, s−2, s−3, . . . can be
calculated successively.

Let us consider the equation x−1f(x) = 0, i.e.,

xn−1 + p1x
n−2 + · · ·+ pn−1 + pnx

−1 = 0.
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Putting x = α1, α2, . . . , αn in succession and adding, we have

sn−1 + p1sn−2 + · · ·+ pn−1n+ pns−1 = 0.

But sn−1 + p1sn−2 + · · ·+ (n− 1)pn−1 = 0.
Therefore, pnsn−1 + pn−1 = 0.
This gives s−1.

Again, let us consider the equation x−2f(x) = 0, i.e.,

xn−2 + p1x
n−3 + · · ·+ pn−2 + pn−1x

−1 + pnx
−2 = 0.

Putting x = α1, α2, . . . , αn in succession and adding, we have

sn−2 + p1sn−3 + · · ·+ pn−2n+ pn−1s−1 + pns−2 = 0.

But sn−2 + p1sn−3 + · · ·+ (n− 2)pn−2 = 0.
Therefore, pnsn−2 + pn−1s−1 + 2pn−2 = 0.
This gives s−2.

Note 3: If α1, α2, . . . , αn be the roots of the equation

xn + p1x
n−1 + p2x

n−2 + · · ·+ pn = 0,

then Σαm
1 α

q
2 can be calculated when m and q are positive integers.

When m 6= q,

Σαm
1 Σαq

2 = Σαm+q
1 +Σαm

1 α
q
2

=⇒ Σαm
1 α

q
2 = smsq − sm+q.

When m = q,

(Σαm
1 )2 = Σα2m

1 + 2Σαm
1 α

m
2

=⇒ Σαm
1 α

m
2 =

1

2
(s2m − s2m).

2.4 Transformation of Equations

When a polynomial equation is given whose roots are not known, it is pos-
sible to obtain a new polynomial equation whose roots are connected with
those of the given equation by some assigned relation. The method of find-
ing the new equation is said to be a transformation. Such a transformation
sometimes helps us to study the nature of the roots of the given equation
which would have been otherrwise a difficult job.

Before taking up the general procedure, we discuss some typical transfor-
mations of polynomial equations.
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2.4.1 To transform a polynomial equation whose roots are α1, α2,

. . . , αn into another polynomial equation whose roots are
mα1,mα2, . . . ,mαn; m ∈ Z

Let the polynomial equation whose roots are α1, α2, . . . , αn be

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0.

Let y = mα1. Then α1 =
y
m . Since α1 is a root of the given equation, so

a0α
n
1 + a1α

n−1
1 + · · · + an−1α1 + an = 0.

Therefore,

a0

( y

m

)n
+ a1

( y

m

)n−1
+ · · ·+ an−1

( y

m

)

+ an = 0.

or, a0y
n+a1my

n−1+ · · ·+an−1m
n−1y+anm

n = 0. This is the transformed
equation.

Note 1: The successive coefficients of the transformed equation are ob-
tained by multiplying the successive coefficients of the given equation, be-
ginning from the first, by 1,m, . . . ,mn−1,mn respectively.

Note 2: This transformation is useful for the purpose of removing frac-
tional coefficients of an equation or reducing the leading coefficient of an
equation to unity.

2.4.2 To transform an a polynomial equation into one whose roots
are reciprocal of the roots of the given equation

Let the polynomial equation whose roots are α1, α2, . . . , αn be

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0.

It is assumed that none of the roots is zero. Let y = 1
α1
. Then α1 =

1
y . Since

α1 is a root of the given equation, so

a0α
n
1 + a1α

n−1
1 + · · · + an−1α1 + an = 0.

Therefore,

a0

(
1

y

)n

+ a1

(
1

y

)n−1

+ · · ·+ an−1

(
1

y

)

+ an = 0.

or, any
n + an−1y

n−1 + · · ·+ a1y+ a0 = 0. This is the transformed equation.

Note 1: The coefficients of the given equation appear in the reverse or-
der in the transformed equation.
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2.4.3 To transform a polynomial equation whose roots are α1, α2,

. . . , αn into another polynomial equation whose roots are
α1 − h, α2 − h, . . . , αn − h; h constant

Let the polynomial equation whose roots are α1, α2, . . . , αn be

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0.

Let y = α1 − h. Then α1 = y + h. Since α1 is a root of the given equation,
so

a0(y + h)n + a1(y + h)n−1 + · · ·+ an−1(y + h) + an = 0.

This can be expressed as A0x
n +A1x

n−1 + · · ·+An−1x+An = 0, where An

is the remainder when f(x) is divided by x−h and let q1(x) be the quotient.
An−1i is the remainder when the quotient q1(x) is divided by x− h and let
q2(x) be the quotient. Repeating the same process, An−2, An−3, . . . , A1 are
obtained as the successive remainders and finally A0 = a0.

Note 1: Here the transformation that is applied to the equation is given by
x = y + h.

Note 2: The transformation can be utilized to remove a specified term
from an equation.

2.4.4 Transformation in general

Given an equation f(x) = 0, we are to obtain an equation φ(y) = 0 whose
roots are connected with the roots of the given equation by a relation
ψ(x, y) = 0. φ(y) is obtained by eliminating x between f(x) = 0 and
ψ(x, y) = 0.

2.5 Reciprocal Equations

A polynomial equation is said to be a reciprocal equation if the reciprocal of
each of its roots is also a root of it.

Therefore, a necessary condition for the polynomial equation f(x) = 0 to be
a reciprocal equation is that 0 is not a root of it, i.e., f(0) 6= 0.

If f(x) = 0 be a reciprocal equation of degree n having roots α1, α2, . . . , αn

and φ(x) = 0 be the polynomial equation whose roots are 1
α1
, 1
α2
, . . . , 1

αn

,
then the equations f(x) = 0 and φ(x) = 0 are identical.
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Let a0x
n + a1x

n−1 + · · · + an = 0 be a reciprocal equation. Then it is
identical with the equation anx

n + an−1x
n−1 + · · ·+ a0 = 0. Therefore,

(a0, a1, . . . , an) = k(an, an−1, . . . , a0) for some k 6= 0.

That is, a0 = kan, a1 = kan−1, . . . , an = ka0 which gives k = ±1. Thus, two
cases arise:

Case 1 – k = 1: In this case a0 = an, a1 = an−1, . . . , an = a0. The
coefficients of equidistant terms from the beginning and the end are equal in
magnitude and have the same sign. The equation is said to be a reciprocal
equation of the first type or first class.

Case 1 – k = −1: In this case a0 = −an, a1 = −an−1, . . . , an = −a0.
The coefficients of equidistant terms from the beginning and the end are
equal in magnitude but of opposite signs. The equation is said to be a re-
ciprocal equation of the second type or second class.

Examples: 1. The equation x2 + 1 is a reciprocal equation of degree 2
and of the first type.

2. The equation 3x3 − 13x2 + 13x− 3 = 0 is a reciprocal equation of degree
3 and of the second type.

Theorem B.3: If f(x) = 0 be a reciprocal equation of degree n and of
the first type, then f(x) = xnf

(
1
x

)
. Conversely, if f(x) be a polynomial of

degree n and f(x) = xnf
(
1
x

)
, then f(x) = 0 is a reciprocal equation of the

first type.

Theorem B.4: If f(x) = 0 be a reciprocal equation of degree n and of
the second type, then f(x) = −xnf

(
1
x

)
. Conversely, if f(x) be a polynomial

of degree n and f(x) = −xnf
(
1
x

)
, then f(x) = 0 is a reciprocal equation of

the second type.

Theorem B.5: The solution of any reciprocal equation depends on that
of a reciprocal equation of the first type and of even degree.

Definition: A reciprocal equation is said to be of the standard form if
it is of the first type and of even degree.

Theorem B.6: The solution of a reciprocal equation of the first type and
of degree 2m depends on that of an equation of degree m.
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2.6 The Cubic Equation

2.7 The Biquadratic Equation
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3 Inequalities

3.1 Basic Concepts

When two real numbers are not equal, a relation of inequality is said to exist
between them. The law of trichotomy in R states that any two real numbers
a, b must satisfy one and only one of the following relation:

1. a is greater than b (a > b),

2. a is equal to b (a = b),

3. a is less than b (a < b).

The first and third in the above list are inequality relations.

Therefore, if a be a real number different from 0, then one of the follow-
ing inequalities must hold:

1. a > 0,

2. a < 0.

When a > 0, a is said to be positive; when a < 0, a is said to be negative.

We define a > b if a− b > 0 and a < b if a− b < 0. Note that the relations
a > b and b < a state the same inequality relation, since a > 0 ⇔ −a < 0.

The symbol a ≥ b means a is greater than or equal to b or, more pre-
cisely, a is at least b. On the other hand, the symbol a ≤ b means a is less
than or equal to b or, more precisely, a is at most b.

3.2 Basic Properties of Inequalities

If a, b, c be real numbers. Then

1. a ≥ b and b ≥ c =⇒ a ≥ c

2. a ≥ b and b > c =⇒ a > c

3. a ≥ b =⇒ a+ c ≥ b+ c

4. a ≥ b and c > 0 =⇒ ac ≥ bc

5. a ≥ b and c < 0 =⇒ ac ≤ bc.
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Theorem C.1: If a1, a2, . . . , an; b1, b2, . . . , bn be all real numbers such that
ai > bi for i = 1, 2, . . . , n, then

a1 + a2 + · · · + an > b1 + b2 + · · ·+ bn.

Theorem C.2: If a1, a2, . . . , an; b1, b2, . . . , bn be all positive real numbers
such that ai > bi for i = 1, 2, . . . , n, then

a1a2 . . . an > b1b2 . . . bn.

Note: The theorem does not hold if the numbers are not all positive. For
example, 3 > −2 and 4 > −9 but 3.4 < (−2).(−9).

Theorem C.3: If a, b be positive real numbers with a > b, and n be a
positive integer, then an > bn.

Note: If a, b are real numbers and a > b, and n is a positive integer, it
does not necessarily follow that an > bn. For example, 2 > −3 implies
(2)2 < (−3)2, but 2 > −1 implies (2)2 > (−1)2.

Theorem C.4: If a, b be positive real numbers with a > b, and n be a
negative integer, then an < bn.

Theorem C.5: If a, b be positive real numbers with a > b, and n be a
rational number, then an ≷ bn according as n ≷ 0.

3.3 The Cauchy-Schwarz Inequality

If a1, a2, . . . , an; b1, b2, . . . , bn be all real numbers, then

(a1b1 + a2b2 + · · ·+ anbn)
2 ≤ (a21 + a22 + · · ·+ a2n)(b

2
1 + b22 + · · ·+ b2n),

or in much compact form as

(
n∑

k=1

akbk

)2

≤
(

n∑

k=1

a2k

)(
n∑

k=1

b2k

)

.

The equality occurs when either
(i) ai = 0 for i = 1, 2, . . . , n or ai = 0 for i = 1, 2, . . . , n or both ai = 0 and
bi = 0 for i = 1, 2, . . . , n, or
(ii) a1

b1
= a2

b2
= · · · = an

bn
.
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3.4 Arithmetic, Geometric, and Harmonic Means

Let a1, a2, . . . , an be n positive real numbers.
The arithmetic mean (A.M.) of the numbers is defined by

A.M. =
a1 + a2 + · · ·+ an

n
.

The geometric mean (G.M.) of the numbers is defined by

G.M. = n
√
a1a2 . . . an.

The harmonic mean (H.M.) of the numbers is defined by

H.M. =
n

1
a1

+ 1
a2

+ · · ·+ 1
an

.

Let p1, p2, . . . , pn be n positive rational numbers.
The weighted arithmetic mean of a1, a2, . . . , an, with associated weights p1, p2, . . . , pn
respectively, is defined by

A(a, p) =
p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn
.

The weighted geometric mean of a1, a2, . . . , an, with associated weights p1, p2, . . . , pn
respectively, is defined by

G(a, p) = (a1
p1a2

p2 . . . an
pn)

1

p1+p2+···+pn .

The weighted harmonic mean of a1, a2, . . . , an, with associated weights p1, p2, . . . , pn
respectively, is defined by

H(a, p) =
p1 + p2 + · · ·+ pn
p1
a1

+ p2
a2

+ · · ·+ pn
an

.

Theorem C.6: If a1, a2, . . . , an be n positive real numbers, then

A.M. ≥ G.M. ≥ H.M..

The equality occurs when a1 = a2 = · · · = an.

Theorem C.7: If a1, a2, . . . , an be n positive real numbers and p1, p2, . . . , pn
be n positive rational numbers, then

A(a, p) ≥ G(a, p) ≥ H(a, p).

The equality occurs when a1 = a2 = · · · = an.
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Theorem C.8: If a be a positive real number, not equal to 1, and m be
a rational number, then

am − 1 > or < m(a− 1)

according as m does not or does lie between 0 and 1.

Corollary C.8.1: Let x > −1, but not equal to 0 and m be a rational
number. Then

(1 + x)m > or < 1 +mx

according as m does not or does lie between 0 and 1.

Corollary C.8.2: Let x < 1, but not equal to 0 and m be a rational number.
Then

(1− x)m > or < 1−mx

according as m does not or does lie between 0 and 1.

Corollary C.8.3: Let a and b be unequal positive numbers and m be a
rational number. Then

mam−1(a− b) > or < am − bm > or < mbm−1(a− b)

according as m does not or does lie between 0 and 1.

Theorem C.9: If a1, a2, . . . , an be n positive real numbers, not all equal,
and m be a rational number, then

a1
m + a2

m + · · ·+ an
m

n
> or <

(
a1 + a2 + · · ·+ an

n

)m

according as m does not or does lie between 0 and 1. The equality occurs
when a1 = a2 = · · · = an.

Theorem C.10: If a1, a2, . . . , an be n positive real numbers, not all equal,
p1, p2, . . . , pn be positive real numbers and m be a rational number, then

p1a1
m + p2a2

m + · · · + pnan
m

p1 + p2 + · · ·+ pn
> or <

(
p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn

)m

according as m does not or does lie between 0 and 1. The equality occurs
when a1 = a2 = · · · = an.

Corollary C.10.1: If a1, a2, . . . , an be n positive real numbers, not all equal,
q1, q2, . . . , qn be positive real numbers and m be a rational number, then

q1a1
m + q2a2

m + · · ·+ qnan
m > or < (q1a1 + q2a2 + · · · + qnan)

m

30



according as m does not or does lie between 0 and 1. The equality occurs
when a1 = a2 = · · · = an.

3.5 Applications to Problems of Maxima and Minima

1. Let x1, x2, . . . , xn be n positive real numbers such that their sum x1 +
x2 + · · ·+ xn = k, a constant. Then by Theorem C.6,

(
k

n

)n

≥ x1x2 . . . xn.

Therefore, the maximum value of x1x2 . . . xn occurs when x1 = x2 =
· · · = xn = k

n and the maximum value is
(
k
n

)n
.

2. Let x1, x2, . . . , xn be n positive real numbers such that their product
x1x2 . . . xn = k, a constant. Then by Theorem C.6,

x1 + x2 + · · ·+ xn

n
≥ k

1

n .

Therefore, the minimum value of x1x2 . . . xn occurs when x1 = x2 =
· · · = xn = k

n and the maximum value is nk
1

n .

3. Let x1, x2, . . . , xn be n positive real numbers such that their sum x1 +
x2 + · · ·+ xn = k, a constant, and m be a rational number other than
0 and 1. Then by Theorem C.9,

x1
m + x2

m + · · ·+ xn
m

n
≥

(
k

n

)m

when m > 1 or m < 0;

x1
m + x2

m + · · ·+ xn
m

n
≤

(
k

n

)m

when 0 < m < 1.

Therefore, when m > 1 or m < 0, the minimum value of x1
m + x2

m +
· · · + xn

m occurs when x1 = x2 = · · · = xn = k
n and the minimum

value is n
(
k
n

)m
. On the other hand, When 0 < m < 1, the maximum

value of x1
m + x2

m + · · · + xn
m occurs when x1 = x2 = · · · = xn = k

n

and the maximum value is n
(
k
n

)m
.

4. Let x1, x2, . . . , xn be n positive real numbers such that x1
m + x2

m +
· · · + xn

m = k, a constant, and m be a rational number other than 0
and 1. Then by Theorem C.9,

k

n
≥

(
x1 + x2 + · · ·+ xn

n

)m

when m > 1 or m < 0;

k

n
≤

(
x1 + x2 + · · ·+ xn

n

)m

when 0 < m < 1.
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Hence,

(
k

n

) 1

m

≥
(
x1 + x2 + · · ·+ xn

n

)m

when m > 1;

(
k

n

) 1

m

≤
(
x1 + x2 + · · ·+ xn

n

)m

when 0 < m < 1;

(
k

n

) 1

m

≤
(
x1 + x2 + · · ·+ xn

n

)m

when m < 0.

Therefore, whenm > 1, the maximum value of x1+x2+ · · ·+xn occurs

when x1 = x2 = · · · = xn =
(
k
n

) 1

m and the maximum value is n
(
k
n

) 1

m .
On the other hand, when m < 0 or 0 < m < 1, the minimum value of

x1 + x2 + · · · + xn occurs when x1 = x2 = · · · = xn =
(
k
n

) 1

m and the

minimum value is n
(
k
n

) 1

m .

Note that the above applications can be extended to include those cases also
where weights are taken into account.
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