

Lecture notes on
Computer System Architecture

Topic: History of Computers and IAS Computer

Presented by,
Prof. Biswanath Sen
Dept. of Computer Science
Panihati Mahavidyalaya

UNIT-1

A BRIEF HISTORY OF COMPUERS: We begin our study of computers with a brief history.

First Generation: Vacuum Tubes

ENIAC The ENIAC (Electronic Numerical Integrator And Computer), designed and constructed at the University of Pennsylvania, was the world's first general-purpose electronic digital computer. The project was a response to U.S needs during World War II.

John Mauchly, a professor of electrical engineering at the University of Pennsylvania, and John Eckert, one of his graduate students, proposed to build a general-purpose computer using vacuum tubes for the BRL's application. In 1943, the Army accepted this proposal, and work began on the ENIAC. The resulting machine was enormous, weighing 30 tons, occupying 1500 square feet of floor space, and containing more than 18,000 vacuum tubes. When operating, it consumed 140 kilowatts of power. It was also substantially faster than any electromechanical computer, capable of 5000 additions per second.

The ENIAC was completed in 1946, too late to be used in the war effort. The use of the ENIAC for a purpose other than that for which it was built demonstrated its general-purpose nature. The ENIAC continued to operate under BRL management until 1955, when it was disassembled.

THE VON NEUMANN MACHINE The task of entering and altering programs for the ENIAC was extremely tedious. The programming process can be easy if the program could be represented in a form suitable for storing in memory alongside the data. Then, a computer could get its instructions by reading them from memory, and a program could be set or altered by setting the values of a portion of memory. This idea is known as the stored-program concept. The first publication of the idea was in a 1945 proposal by von Neumann for a new computer, the EDVAC (Electronic Discrete Variable Computer).

In 1946, von Neumann and his colleagues began the design of a new stored-program computer, referred to as the IAS computer, at the Princeton Institute for Advanced Studies. The IAS computer,although not completed until 1952,is the prototype of all subsequent general-purpose computers.

Figure 1.1 Structure of IAS Computer

Figure 1.1 shows the general structure of the IAS computer). It consists of

- A main memory, which stores both data and instruction
- An arithmetic and logic unit (ALU) capable of operating on binary data
- A control unit, which interprets the instructions in memory and causes them to be executed
- Input and output (I/O) equipment operated by the control unit

This structure was outlined in von Neumann's earlier proposal, which is worth quoting at this point:

First: Because the device is primarily a computer, it will have to perform the elementary operations of arithmetic most frequently. At any rate a central arithmetical part of the device will probably have to exist and this constitutes the first specific part: CA.

Second: The logical control of the device, that is, the proper sequencing of its operations, can be most efficiently carried out by a central control organ. By the central control and the organs which perform it form the second specific part: CC

Third: Any device which is to carry out long and complicated sequences of operations (specifically of calculations) must have a considerable memory .. . At any rate, the total memory constitutes the third specific part of the device: M.

Fourth: The device must have organs to transfer ... information from R into its specific parts C and M. These organs form its input, the fourth specific part: I

Fifth: The device must have organs to transfer . . . from its specific parts C and M into R. These organs form its output, the fifth specific part: 0 .

The control unit operates the IAS by fetching instructions from memory and executing them one at a time. A more detailed structure diagram is shown in Figure 1.2. This figure reveals that both the control unit and the ALU contain storage locations, called registers, defined as follows:

- Memory buffer register (MBR): Contains a word to be stored in memory or sent to the I/O unit, or is used to receive a word from memory or from the I/O unit.
- Memory address register (MAR): Specifies the address in memory of the word to be written from or read into the MBR.
- Instruction register (IR): Contains the 8-bit opcode instruction being executed.
- Instruction buffer register (IBR): Employed to hold temporarily the right-hand instruction from a word in memory.
- Program counter (PC): Contains the address of the next instruction-pair to be fetched from memory.
- Accumulator (AC) and multiplier quotient (MQ): Employed to hold temporarily operands and results of ALU operations.

Figure 1.2 Expanded Structure of IAS Computer
COMMERCIAL COMPUTERS The 1950s saw the birth of the computer industry with two companies, Sperry and IBM, dominating the marketplace. In 1947, Eckert and Mauchly formed the Eckert-Mauchly Computer Corporation to manufacture computers commercially. Their first successful machine was the UNIVAC I (Universal Automatic Computer), which was commissioned by the Bureau of the Census for the 1950 calculations.The Eckert-Mauchly Computer Corporation became part of the UNIVAC division of Sperry-Rand Corporation, which went on to build a series of successor machines.

The UNIVAC I was the first successful commercial computer. It was intended for both scientific and commercial applications.

The UNIVAC II, which had greater memory capacity and higher performance than the UNIVAC I, was delivered in the late 1950s and illustrates several trends that have remained characteristic of the computer industry.

The UNIVAC division also began development of the 1100 series of computers, which was to be its major source of revenue. This series illustrates a distinction that existed at one time. The first model, the UNIVAC 1103, and its successors for many years were primarily intended for scientific applications, involving long and complex calculations.

The Second Generation: Transistors

The first major change in the electronic computer came with the replacement of the vacuum tube by the transistor. The transistor is smaller, cheaper, and dissipates less heat than a vacuum tube but can be used in the same way as a vacuum tube to construct computers. Unlike the vacuum tube, which requires wires, metal plates, a glass capsule, and a vacuum, the transistor is a solidstate device, made from silicon.

The transistor was invented at Bell Labs in 1947 and by the 1950s had launched an electronic revolution. It was not until the late 1950s, however, that fully transistorized computers were commercially available.

The use of the transistor defines the second generation of computers. It has become widely accepted to classify computers into generations based on the fundamental hardware technology employed (Table 1.1).

Gentration	Approximate Dates	Technology	Typical Speed (operations per second)
1	$1946-1957$	Vacuum tube	40,000
2	$1958-1964$	Transistor	200,000
3	$1965-1971$	Small and medium scale integration	$1,000,000$
4	$1972-1977$	Large scale integration	$10,000,000$
5	$1978-1991$	Very large scale integration	$100,000,000$
6	$1991-$	Ultra large scale integration	$1,000,000,000$

Table 1.1 Computer Generations
THE IBM 7094 From the introduction of the 700 series in 1952 to the introduction of the last member of the 7000 series in 1964, this IBM product line underwent an evolution that is typical of computer products. Successive members of the product line show increased performance, increased capacity, and/or lower cost.

The Third Generation: Integrated Circuits

In 1958 came the achievement that revolutionized electronics and started the era of microelectronics: the invention of the integrated circuit. It is the integrated circuit that defines the third generation of computers.
MICROELECTRONICS: Microelectronics means, literally, "small electronics." Since the beginnings of digital electronics and the computer industry, there has been a persistent and consistent trend toward the reduction in size of digital electronic circuits.
IBM SYSTEM/360 By 1964, IBM had a firm grip on the computer market with its 7000 series of machines. In that year, IBM announced the System/360, a new family of computer products.
DEC PDP-8 In the same year that IBM shipped its first System/360, another momentous first shipment occurred: PDP-8 from Digital Equipment Corporation (DEC).At a time when the average computer required an air-conditioned room,the PDP-8 (dubbed a minicomputer by the industry, after the miniskirt of the day) was small enough that it could be placed on top of a lab bench or be built into other equipment. It could not do everything the mainframe could, but at $\$ 16,000$, it was cheap enough for each lab technician to have one. In contrast, the System/360 series of mainframe computers introduced just a few months before cost hundreds of thousands of dollars.

Later Generations

Table 1.1 suggests that there have been a number of later generations, based on advances in integrated circuit technology. With the introduction of large-scale integration (LSI), more than 1000 components can be placed on a single integrated circuit chip. Very-large-scale integration (VLSI) achieved more than 10,000 components per chip, while current ultra-large-scale integration (ULSI) chips can contain more than one million components.
SEMICONDUCTOR MEMORY The first application of integrated circuit technology to computers was construction of the processor (the control unit and the arithmetic and logic unit) out of integrated circuit chips. But it was also found that this same technology could be used to construct memories.
MICROPROCESSORS Just as the density of elements on memory chips has continued to rise,so has the density of elements on processor chips.As time went on,more and more elements were placed on each chip, so that fewer and fewer chips were needed to construct a single computer processor.

A breakthrough was achieved in 1971,when Intel developed its 4004 .The 4004 was the first chip to contain all of the components of a CPU on a single chip.

The next major step in the evolution of the microprocessor was the introduction in 1972 of the Intel 8008. This was the first 8 -bit microprocessor and was almost twice as complex as the 4004.

Neither of these steps was to have the impact of the next major event: the introduction in 1974 of the Intel 8080.This was the first general-purpose microprocessor. Whereas the 4004 and the 8008 had been designed for specific applications, the 8080 was designed to be the CPU of a general-purpose microcomputer

About the same time, 16 -bit microprocessors began to be developed. However, it was not until the end of the 1970s that powerful, general-purpose 16-bit microprocessors appeared. One of these was the 8086.

DESIGNING FOR PERFORMANCE

Year by year, the cost of computer systems continues to drop dramatically, while the performance and capacity of those systems continue to rise equally dramatically. Desktop applications that require the great power of today's microprocessor-based systems include

- Image processing
- Speech recognition
- Videoconferencing
- Multimedia authoring
- Voice and video annotation of files
- Simulation modeling

Microprocessor Speed
The evolution of Microprocessors continues to bear out Moore's law. So long as this law holds, chipmakers can unleash a new generation of chips every three years-with four times as many transistors. In microprocessors, the addition of new circuits, and the speed boost that comes from reducing the distances between them, has improved performance four- or fivefold every three
years or so since Intel launched its x86 family in 1978. The more elaborate techniques for feeding the monster into contemporary processors are the following:

- Branch prediction: The processor looks ahead in the instruction code fetched from memory and predicts which branches, or groups of instructions, are likely to be processed next
- Data flow analysis: The processor analyzes which instructions are dependent on each other's results, or data, to create an optimized schedule of instructions
- Speculative execution: Using branch prediction and data flow analysis, some processors speculatively execute instructions ahead of their actual appearance in the program execution, holding the results in temporary locations.

Performance Balance

While processor power has raced ahead at breakneck speed, other critical components of the computer have not kept up.The result is a need to look for performance balance: an adjusting of the organization and architecture to compensate for the mismatch among the capabilities of the various components.

The interface between processor and main memory is the most crucial pathway in the entire computer because it is responsible for carrying a constant flow of program instructions and data between memory chips and the processor.

There are a number of ways that a system architect can attack this problem, all of which are reflected in contemporary computer designs. Consider the following examples:

- Increase the number of bits that are retrieved at one time by making DRAMs "wider" rather than "deeper" and by using wide bus data paths.
- Change the DRAM interface to make it more efficient by including a cache7 or other buffering scheme on the DRAM chip.
- Reduce the frequency of memory access by incorporating increasingly complex and efficient cache structures between the processor and main memory.
- Increase the interconnect bandwidth between processors and memory by using higherspeed buses and by using a hierarchy of buses to buffer and structure data flow.

Improvements in Chip Organization and Architecture

There are three approaches to achieving increased processor speed:

- Increase the hardware speed of the processor.
- Increase the size and speed of caches that are interposed between the processor and main memory. In particular, by dedicating a portion of the processor chip itself to the cache, cache access times drop significantly.
- Make changes to the processor organization and architecture that increase the effective speed of instruction execution.

However, as clock speed and logic density increase, a number of obstacles become more significant:

- Power: As the density of logic and the clock speed on a chip increase, so does the power density.

